The Monitoring of Nizhniy Kaban Lake by 16s Rrna Gene Amplicon Data Set-Based Bacterial Diversity

Ludmila L. Frolova*, Anthony Elias Sverdrup

Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia

Abstract

The paper presents the results of research of bacterial diversity of Nizhniy Kaban Lake (Kazan, Russia) for 2016-2017, using the marker gene 16S rRNA of hydrobionts, based on the method of next-generation sequencing. Nizhniy Kaban, Verhniy Kaban and Sredniy Kaban are included in the system of Kaban Lakes. They are located in the center of a large industrial city, and suffer anthropogenic load. According to ecological studies, Kaban Lakes are polluted. The sequences of 16S rRNA Bacteria gene fragment of the freshwater lake Nizhniy Kaban were submitted to the international database in fastq format on the website NCBI with the numbers SRR7510984 and SRR7516469. The comparative analysis of metagenomic data showed a significant change in bacterial diversity over the years. A total of 103030 (2016) and 90402 (2017) high-quality reads were obtained; 76% (2016) and 70% (2017) of the bacterial population was classified to the genus level, while 0.25% (2017) was classified to the species level. In total, 18 species of Bacteria were identified. Among them, bacteria occurring in the human gastrointestinal tract, were found the most often. These types of bacteria can be a threat to human health. Therefore, the species composition of Bacteria community should be taken into account when assessing the ecological state of water reservoirs.

Keywords: Gene 16S rRNA, Next-generation sequencing, Freshwater lake, Bacteria

1 Introduction

Currently, the assessment of water quality is carried out using various physicochemical and biological methods. One of them is the method of isolation and identification of microorganisms. The presence of bacterial pathogens in the water reservoirs adversely affects human health. They can be the agents of such diseases as cholera, diarrhea, dysentery, hepatitis A, typhoid fever and poliomyelitis (1).

To assess the diversity of microorganisms in various environments, for example, in human intestine, bottom sediments of Lake Baikal or in the hot springs of Kamchatka, the methods of next-generation sequencing are used (2). This technology allows to accelerate the process of determining the sequences of organisms' genomes (3).

The sequencing of 16S rRNA gene is a universal and effective approach for taxonomic characterization, as this gene is present in the genomes of all prokaryotes, and has relatively low variability (4).

Metagenomics can provide valuable information on the functional ecology of environmental communities (5). We previously used metagenomic DNA sequencing for the identification of zooplankton by COI gene, and phytoplankton by rbcL gene, in order to assess the ecological state of the freshwater Nizhniy Kaban lake (6-7).

The work presents the results of research of bacterial diversity of Nizhniy Kaban lake (Kazan, Russia) for 2016-2017, using the marker gene 16S rRNA of hydrobionts, based on the method of next-generation sequencing. Nizhniy Kaban, Verhniy Kaban and Sredniy Kaban are included in the system of Kaban Lakes. They are located in the center of a large industrial city, and suffer anthropogenic load. According to ecological studies, Kaban Lakes are polluted.

2 Methods

The sampling from Nizhniy Kaban Lake (Kazan, Russia) was carried out during 2016-2017, in accordance with the standard hydrobiological methods (8).

DNA was isolated from the pellet, using FAST DNA Kit (MP biomedicals), according to the manufacturer's protocol. The pellet was obtained by centrifuging of 50 ml of the sample, at a speed of 10,000 g for 15 minutes. The amplification of the isolated DNA was carried out using PhusionHigh-Fidelity DNA polymerase (ThermoFisher), and primers (Table 1). After this, the second PCR cycle was performed in order to index the samples (Nextera XT indices). Purification of PCR products was performed using...
Agencourt AMPure XP beads (Beckman Coulter). The obtained DNA libraries were sequenced on the device Illumina MiSeq (MiSeq Reagent kit v3).

Table 1: Primers for PCR of 16S rRNA gene

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>16SF_I (forward)</td>
<td>5' tcgtcggcagcgtcagatgtataacagctaggg gggcgcgag-3'</td>
</tr>
<tr>
<td>16SR_I (reverse)</td>
<td>5' gtctcgtggcagctagtgtaagagacacaggaactag vggatctaatcc-3'</td>
</tr>
</tbody>
</table>

Metagenomic data were entered into the international SRA database on the website NCBI with numbers: SRR7510984 and SRR7516469 (9). After filtering the reads by quality, trimming of sequences and removing of chimeric sequences, the obtained nucleotide sequences of 16S rRNA Bacteria gene were aligned, using the software BLAST, in order to establish the taxonomic composition.

The software Krona chart (10) and GraphPad (11) were used to build charts.

3 Results and Discussion

In 2016-2017, the next-generation sequencing method was applied with the aim to identify Bacteria from Nizhniy Kaban Lake.

3.1 Krona chart of the bacteria represented by 16S rRNA gene amplicon-based bacterial diversity

The percentage distribution of Bacteria of Nizhniy Kaban Lake by species diversity and reads for 2016 is shown in Fig. 1-2. The percentage distribution of Bacteria of Nizhniy Kaban Lake by species diversity and reads for 2017 is shown in Fig. 3-4. Each circle represents the phylum, class, order, family, genus, and species from the inside to the outside of the circle, respectively, indicated by the percent diversity, based on the absolute number of representative bacteria.

Figure 1: The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake (2016)
Figure 2: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake (2016)

Figure 3: The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake (2017)
Figure 4: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake (2017)

3.2 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by phylum

The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake by phylum (2016-2017) is shown in Figure 5. As can be seen from Fig. 5, Proteobacteria (56.7%/38.57%), Bacteroidetes (28.57%/9.28%) and Actinobacteria (14.29%/9.79%) are the most numerous by species diversity at the level of phylum, respectively by years.

Figure 5: The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake by phylum (2016-2017)

The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by phylum (2016-2017) is shown in Figure 6. As can be seen from Fig. 6, Cyanobacteria (75.63%/75.19%) and Proteobacteria (3.68%/19%) are the most numerous by reads.

Figure 6: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by phylum (2016-2017)

3.3 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by class

The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake by class (2016-2017) is shown in Fig. 7, parts 1-2. As can be seen from Fig. 7, Alphaproteobacteria (14.3%/21.1%), Betaproteobacteria (15.71%/16.49%) and Gammaproteobacteria (5.71%/14.43%) are the most numerous by species diversity. The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by class (2016-2017) is shown in Fig. 8, parts 1-2. As can be seen from Fig. 8, the species Oscillatoriophycideae (75.60%/68.15%) is the most numerous by reads among Bacteria.
Figure 7: part 1. The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake by class (2016-2017)

Figure 7: part 2. The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake by class (2016-2017)

Figure 8: part 1. The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by class (2016-2017)

Figure 8: part 2. The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by class (2016-2017)

3.4 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by order

The percentage of species diversity and reads of 16S rRNA Bacteria of Nizhniy Kaban Lake by order (2016-2017) is shown in Fig. 9-11. As can be seen from Fig. 9-11, the following orders were of the greatest importance in terms of species diversity and/or reads, in 2016: Oscillatoriales (1.43%/75.60%), Sphingobacteriales (17.14%/3.79%), Burkholderiales (14.29%/2.05%), Flavobacteriales (11.43%/2.69%); in 2017: Oscillatoriales (1.03%/67.63%), Burkholderiales (10.31%/4.08%), Actinomycetales (8.25%/0.47%).

Figure 10: The percentage of species diversity and reads of 16S rRNA Bacteria of Nizhniy Kaban Lake by order (2016)

1 – Oscillatoriales (1.43%/75.60%), 2 – Frankiales (7.14%/6.25%), 3 – Sphingobacteriales (17.14%/3.80%)

1010
Figure 9: The percentage of species diversity and reads of 16S rRNA Bacteria of Nizhniy Kaban Lake by order (2016-2017)
genera were unique for 2016, 19.4% genera were common for 2016-2017, and 68.2% genera were unique for bacterial community of 2017. *Flavobacterium* (1.4%/0.65%), *Fluvicola* (0.32%/0.42%), *Lewinella* (0.4%/0.3%), *Limnobacter* (0.03%/0.15%), *Limonohabitus* (0.11%/0.02%), *Mycochromatium* (0.11%/0.04%), *Opitutus* (0.19%/0.08%), *Phenylobacterium* (0.03%/0.02%), *Planctomycetes* (0.05%/0.01%), *Planctothrix* (69.82%/42.40%), *Polynucleobacter* (0.40%/0.06%), *Prosthecobacter* (0.16%/0.03%), *Rickettsia* (0.08%/0.01%), *Sediminibacterium* (0.22%/0.63%), *Zymomonas* (0.22%/0.02%) were the common genera for 2016-2017.

3.5 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by family

The total number of identified Bacteria by family is 26/93 families, respectively for 2016/2017. The families by reads are shown in Fig. 12, among them 11% (2016), and 17% (2017) are not classified. The following families are the most represented: *Microcoleaceae* - 38% (2016), 42.5% (2017), *Sporichthyaceae* - 5.78% (2016); *Enterobacteriaceae* - 9.85% (2017), *Comamonadaceae* - 5.54% (2017).

3.6 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by genus

The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by genus (2016-2017) is shown in Fig.13. As can be seen from Fig. 13 - 12.4% of identified Bacteria were unique for 2016, 19.4% genera were common for 2016-2017, and 68.2% genera were unique for bacterial community of 2017. *Flavobacterium* (1.4%/0.65%), *Fluvicola* (0.32%/0.42%), *Lewinella* (0.4%/0.3%), *Limnobacter* (0.03%/0.15%), *Limonohabitus* (0.11%/0.02%), *Mycochromatium* (0.11%/0.04%), *Opitutus* (0.19%/0.08%), *Phenylobacterium* (0.03%/0.02%), *Planctomycetes* (0.05%/0.01%), *Planctothrix* (69.82%/42.40%), *Polynucleobacter* (0.40%/0.06%), *Prosthecobacter* (0.16%/0.03%), *Rickettsia* (0.08%/0.01%), *Sediminibacterium* (0.22%/0.63%), *Zymomonas* (0.22%/0.02%) were the common genera for 2016-2017.
Table 2: Summary of Bacteria identified to the species level from 16S rRNA gene-based metagenomic study of freshwater from Nizhniy Kaban Lake (2017)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinobacteria</td>
<td>Actinobacteria</td>
<td>Actinomycetales</td>
<td>Microbacteriaceae</td>
<td>Agromyces mediolanus</td>
<td>0.0379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Candidatus Aquiluna rubra</td>
<td>0.0263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Micrococcus luteus</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Propionibacteriaceae</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Propionibacterium acnes</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td>Coriobacteriia</td>
<td>Coriobacteriales</td>
<td>Coriobacteriaceae</td>
<td>Collinsella aerofaciens</td>
<td>0.0221</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>Bacteroidia</td>
<td>Bacteroidales</td>
<td>Bacteroidaceae</td>
<td>Bacteroides uniformis</td>
<td>0.0126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parabacteroides distasonis</td>
<td>0.0074</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Bacilli</td>
<td>Bacillales</td>
<td>Staphylococcaceae</td>
<td>Staphylococcus epidermidis</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td>Clostridia</td>
<td>Clostridiales</td>
<td>Peptococcaceae</td>
<td>Desulfosporosinus meridiei</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ruminococcaceae</td>
<td>Faecalibacterium prausnitzii</td>
<td>0.0274</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>Fusobacteria</td>
<td>Fusobacteriales</td>
<td>Fusobacteriaceae</td>
<td>Cetobacterium somerense</td>
<td>0.0011</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>Alphaproteobacteria</td>
<td>Caulobacteriales</td>
<td>Caulobacteriaceae</td>
<td>Brevundimonas diminuta</td>
<td>0.0358</td>
</tr>
<tr>
<td></td>
<td>Betaproteobacteria</td>
<td>Burkholderiales</td>
<td>Comamonadae</td>
<td>Variovorax paradoxus</td>
<td>0.0158</td>
</tr>
<tr>
<td></td>
<td>Gammaproteobacteria</td>
<td>Pseudonadales</td>
<td>Moraxellaceae</td>
<td>Acinetobacter rhizophilae</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pseudonadae</td>
<td>Pseudomonas veronii</td>
<td>0.0116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xanthomonadales</td>
<td>Pseudoxanthomonas mexicana</td>
<td>0.0074</td>
</tr>
<tr>
<td></td>
<td>Epsilonproteobacteria</td>
<td>Campylobacteriales</td>
<td>Helicobacteriaceae</td>
<td>Sulphurcurvum kuijense</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>Verrucomicrobia</td>
<td>Verrucomicrobiales</td>
<td>Verrucomicrobiaceae</td>
<td>Prosthecobacter debontii</td>
<td>0.0284</td>
</tr>
</tbody>
</table>

1 Aniline-assimilating bacteria. They occur in the soil; there are cases of human infection (12).
2 It can be found in fresh and salt water (13).
3 It is an obligate aerobe, widely distributed in the environment. It can be found in soils, dust, water and air. It is also a part of the normal microflora of the skin surface of humans and mammals (14).
4 It is a facultative anaerobe, chemolithoautotrophic sulfur oxidizing bacterium, isolated from gasolene-contaminated groundwater (21). It may be the cause of many infectious processes, including meningitis, septic disease in humans, and septicaemia, abortion in animals. In February 2017, WHO ranked acetobacteria among the most dangerous bacteria, due to their resistance to existing antibacterial drugs (26, 38, 39).
5 Collinsella aerofaciens, a rod-shaped nonmotile obligate anaerobe, is the most abundant actinobacterium in the gastrointestinal tract of healthy humans. An altered abundance of C. aerofaciens may be linked with several health disorders, including irritable bowel syndrome (16).
6 Bacteroides spp are the non-spoor forming gram-negative bacilli, which are the part of the human resident flora (17).
7 Parabacteroides distasonis belong to the main intestinal microbiota of healthy people. At the same time, these bacteria can cause some infections (18).
8 It is a gram-positive bacteria, one of more than 40 species of the genus Staphylococcus (19). It is a part of the normal microflora of human skin, and mucous membranes (less often) (20).
9 Desulfothermus sp. nov., is a spore-forming sulfate-reducing bacterium, isolated from gasolene-contaminated groundwater (21).
10 It is one of the most common and important commensal bacteria of human intestinal microbiota (22).
11 Cetobacterium somerense is a gram-negative, microaerotolerant, non-spoor-forming and rod-shaped bacterium from the genus Cetobacterium, which has been isolated from human feces (23).
12 It was isolated from clinical samples of patients with mucoviscidosis. It is used as a potential bioremediator of marine oil pollution (24).
13 It can be found everywhere. It is abundantly present in environments, which are contaminated with organic compounds or heavy metals (25).
14 Gram-negative bacteria; they are chemorganotrophs with oxidative metabolism. They are saprophytes, and universal in occurrence. They may be the cause of many infectious processes, including meningitis, septic disease in humans, and septicaemia, abortion in animals. In February 2017, WHO ranked acetobacteria among the most dangerous bacteria, due to their resistance to existing antibacterial drugs (26, 38, 39).
15 Pseudomonas veronii is a gram-negative, rod-shaped, fluorescent, motile bacterium, isolated from natural springs in France. It may be used for bioremediation of contaminated soils, as it has been shown to degrade a variety of simple aromatic organic compounds (27, 37).
16 Pseudoxanthomonas mexicana is a species of mesophilic, motile, strictly aerobic, gram-negative, non-spoor-forming, rod-shaped bacteria with one polar flagellum, first isolated from human urine, riverside urban soil and anaerobic digester (28, 31, 35, 36).
17 It is a facultative anaerobe, chemolithoautotrophic sulfur-oxidizing bacterium, typical representative of the genus. The cells have the shape of curved rods, they are mobile, and have a single polar flagellum (29, 33, 34).
18 It was isolated from fresh water (30, 32).
3.7 The percentage of 16S rRNA Bacteria of Nizhniy Kaban Lake by species

The species diversity of Bacteria in 2017 was 0.25% of the total number of organisms by reads. Table 2 shows the classification of bacterial organisms in Nizhniy Kaban Lake. The percentage of species diversity by reads of 16S rRNA Bacteria of Nizhniy Kaban Lake for 2017 is shown in Fig.14.

Figure 14: The percentage of species diversity by reads of 16S rRNA Bacteria of Nizhniy Kaban Lake (2017)

4 Summary

According to the results of the study, using the modern method of next-generation sequencing, the bacterial profile of Nizhniy Kaban Lake for 2016-2017 was characterized. The comparative analysis of metagenomic data showed a significant change in bacterial diversity over the years. A total of 103030 (2016) and 90402 (2017) high-quality reads were obtained; 97.8% (2016) and 98.4% (2017) of the bacterial population were classified to the phylum level, 97.5% (2016) and 95.9% (2017) were classified to the class level, 92.4% (2016) and 95.4% (2017) were classified to the order level, 89.2% (2016) and 87.1% (2017) were classified to the family level, 76.4% (2016) and 70.1% (2017) were classified to the genus level, and 0.25% (2017) was classified to the species level. In total, 18 species of Bacteria were identified. Among them, bacteria occurring in the human gastrointestinal tract, were found the most often. These types of bacteria can be a threat to human health. Therefore, the species composition of Bacterial community should be taken into account when assessing the ecological state of water reservoirs.

5 Conclusions

The results obtained are of great practical interest in the field of monitoring of water reservoirs. The method of next-generation sequencing can be successfully used for the control of water reservoirs, in particular, and for the assessment of ecological state of water reservoirs, in general.

Acknowledgements

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The authors would like to thank Dr. S.Malanin and E.Boulygina, the scientists of Kazan Federal University, for their assistance in experimental work.

References

34. Gomaa EA, Mahmoud MH, Mousa MG, El-Dahshan EM. Cyclic Voltammetry for the Interaction between Bismuth Nitrate and Methyl Red in Potassium Nitrate Solutions. Chemical Methodologies. 2019 Jan 1;3(1, pp. 1-144);1-1.