Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Assessment of Physical-Chemical Water Quality  
Characteristics and Heavy Metals Content of Lower  
Johor River, Malaysia  
1
1, 2  
3
1
1
1
Y.Q. Liang , K.V. Annammala *, P. Martin , E.L. Yong , L.S. Mazilamani , M.Z.M. Najib  
1
Department of Water and Environmental Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
2
Centre of Environmental Sustainability & Water Security (IPASA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
3
Asian School of the Environment, Nanyang Technological University, Singapore  
Received: 09/03/2020  
Accepted: 16/06/2020  
Published: 20/09/2020  
Abstract  
Surface freshwater quality has received more attention in recent years, which is since fresh water is regarded as a limited resource and  
many threats can negatively affect the water quality. The expansion of urban pollution in the Johor River in Johor State, Malaysia, has been  
induced by different anthropogenic activities being carried out, which bring potential risks to freshwater quality. The aim of this study was  
to quantify the physical-chemical properties of water and heavy metal concentrations at 11 sampling sites (S 01-S 11) selected along the  
Johor River. Eight water quality parameters were determined, and nine heavy metals were determined using Inductively Coupled Plasma-  
Mass Spectrometry (ICP-MS). Findings revealed that total suspended solid concentration and pH of the water samples satisfied the Class II  
outlined in the National Water Quality Standards for Malaysia (NWQSM). Most of the ammonia concentrations satisfied the Class II except  
at stations S 01 to S 03. The nutrient concentration (nitrate, nitrite, and phosphate) were found quite low. On the other hand, the range of  
certain elements such as Fe (1.75 to 6.90 ppm), Cu (0.06 to 1.34 ppm), and As (0.01 to 0.29 ppm) was found to exceed the Class II standard  
at all stations. A strong relationship between TSS, As, and Cu concentrations was found, which may be due to Cu and As carried along the  
river by suspended sediments, coming from the anthropogenic sources into the catchment areas. The results indicated that the river water  
quality is extremely sensitive to the local land use and practices. Further detailed research into the concentration of the elements in storm  
water could be the next research focus.  
Keywords: Water Quality, Heavy Metal, National Water Quality Standard in Malaysia, River Water  
Introduction1  
Peninsular Malaysia have been classified as slightly polluted and  
1
3
9 rivers as polluted. Therefore, identification of the pollutants  
Rivers ecosystems have received more attention in recent  
provenance and providing plans to manage the constantly  
polluted rivers are important measures [6].  
years due to their high economic value as food sources and their  
wide use for recreational purposes, nature tourism, etc. [1,2].  
Freshwater is regarded as a limited resource whose retention is  
becoming a significant challenge due to the input of pollutant to  
its resources [3, 35]. The natural processes such as weathering,  
precipitation, soil erosion, etc. and anthropogenic processes such  
as agricultural, urban, and industrial activities are recognised as  
parameters affecting the water quality [3, 34]. Therefore, river  
water quality is recognised as one of the main issues, especially  
in developing countries due to the industrialization and economic  
growth [4, 1, 5]. Such countries, including Malaysia, where the  
rivers water is recognised as the main water resource, are  
supporting daily subsistence and multipurpose uses of water  
resources for local communities [6, 34, 35]. Rapid development  
causes the expansion of developing areas within river basins,  
which may increase the pollution loading into rivers [6, 7, 8].  
Based on the river analysis in Malaysia, 150 out of 646 rivers in  
Water quality degradation is often resulted from non-point  
source pollution; thus, it is hard to control [9]. The water quality  
in rivers is often influenced by sediment runoff, nutrient inputs,  
and other harmful chemical pollutants, which originate from land  
use activities around the catchment area [1]. Different kinds of  
pollutants enter rivers, which are resulted from different  
anthropogenic activities [1, 10]. Based on previous studies, the  
ammoniacal and nutrient input indicates untreated municipal  
sewage and fertiliser [6, 11]. The higher erosion rate, the higher  
total suspended solid (TSS) concentration is found in agriculture  
and urban areas [11]. The spatial variation of physiochemical  
parameters can be used to determine the pollution status of a river  
[
1, 7, 35]. Physicochemical parameters include the physical  
parameters (e.g., TSS and temperature) and chemical parameters  
e.g., dissolve oxygen (DO), pH, ammoniacal nitrogen (AN),  
(
Corresponding author: K.V. Annammala, (a) Department of Water and Environmental Engineering, School of Civil Engineering, Universiti  
Teknologi Malaysia, Johor Bahru, Malaysia, and (b) Centre of Environmental Sustainability & Water Security (IPASA), Universiti Teknologi  
Malaysia, Johor Bahru, Malaysia. Email: kogila@utm.my.  
9
61  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
nitrate, nitrite, and phosphate). Therefore, a reliable water quality  
evaluation is important as the scientific proof for the water  
resource management to control the pollution and develop better  
management and planning [12, 35].  
5 stations were at the selected tributaries of the river. There were  
different types of land uses along the river. The site description  
and the coordinate of the sampling points are summarized in  
Table 1.  
The anthropogenic activities also cause the entrance of large  
amount of heavy metals into water system, which has been  
widespread and stated in many previous studies [13]. The heavy  
metal pollution, in comparison to other pollutions, is more  
alarming due to the non-biodegradable characteristic of heavy  
metal with bio-accumulative behaviour in the system [14, 34].  
The excessive heavy metal forms through various processes and  
pathways, which include natural and anthropogenic sources [15].  
Heavy metals are mainly released from anthropogenic sources,  
especially industrial activities, and mining [13, 16, 17, 34].  
Therefore, the physicochemical parameter and heavy metals  
concentrations are measured to evaluate the water quality.  
Many previous studies stated that inappropriate land use  
induces the deterioration of water quality [9]. Water quality  
evaluation is important to have effective management control and  
improve the water quality [3,6]. The Johor River is the main river  
in Johor State, Malaysia, which is the main freshwater resource in  
Johor State and for the neighbouring country, Singapore [18].  
Based on previously conducted studies, the water quality index of  
the Johor River is ranged from 47 to 52 and fall into Class IV,  
which is only suitable for irrigation purposes. There are various  
anthropogenic activities, including industrial and sand mining  
activities, along the Johor River, and the end of the estuarine is  
close to Singapore. Thus, the water quality of the Johor River is  
of regional concerning interest to control the water pollution and  
to secure the water supply and quality control to be safe for both  
countries [19, 40].  
The main purpose of this study was to quantify the physical-  
chemical water quality characteristics and heavy metals  
concentrations at 11 sampling sites (Figure 1) along the Johor  
River and to determine the current quality of the river system.  
Therefore, the objectives of this study are: 1) To compare the  
water quality status and concentration of heavy metals in the  
Johor River based on Class II outlined in the National Water  
Quality Standards for Malaysia (NWQSM), and 2) To study the  
relationship between the water quality and heavy metals  
concentration in the Johor River in relation to major land uses  
within the catchment area. The selection of the Class II outline in  
NWQSM for comparison purposes was because there are villages  
confined within the system, such as kampong Berangan where the  
river is used for recreational purposes.  
Figure 1: Study area and the water sampling stations of the Johor River  
Table 1: The coordinates and the descriptions of the sampling  
stations  
Sampling  
Station  
Coordinate of the Sampling Station  
Name  
of the Latitude  
river  
Site Description  
Cod  
e no.  
Longitude  
Kota Tinggi Town, located in  
1° 38' 4.4874"N 103° 58' 19.308"E the upstream, mainly consisting  
of industrial areas  
Johor  
River  
S 01  
Johor  
River  
Seluyut 1°  
River 41'56.7234"N  
Johor 1° 41'  
Sand mining, Oil Palm  
1° 43' 35.832"N 103° 53' 58.5954"E  
Plantation  
S 02  
S 03  
S 04  
Sand mining, Oil Palm  
Plantation  
103° 55' 32.0874"E  
103° 56' 55.968"E Oil Palm Plantation  
River 23.1354"N  
Pulau Dendang, Oil Palm  
103° 55' 53.8674"EPlantation, Surrounded with  
mangrove and nipah trees  
Johor 1° 39'  
River 55.4394"N  
S 05  
Sengi  
River  
Johor 1° 35'  
River 34.4034"N  
Redan  
River  
Temon  
River  
S 06  
S 07  
S 08  
S 09  
1° 35' 3.9114"N 103° 59' 14.1714"EOil Palm Plantation  
103° 57' 17.5314"EDownstream, Village  
1° 37' 15.132"N 103° 58' 17.4"E  
Oil Palm Plantation  
Village, Urban area, Oil palm  
plantation  
1° 37' 6.24"N 103° 59' 1.032"E  
Sand mining, Small restaurants  
1° 36' 58.32"N 103° 57' 27.108"E close to the riverbank, Oil Palm  
Plantation  
Tiram  
River  
S 10  
S 11  
Johor 1° 37'  
River 37.1994"N  
103° 58' 2.1"E  
Village, Oil Palm Plantation  
2
Materials and Methods  
2
.1 Study Area  
Surface water samples were collected in pre-cleaned bottles  
The study area selected for the present research is the Johor  
from the eleven sampling stations. Three physicochemical  
properties of water (temperature, salinity, and pH) were  
determined on site by in-situ water quality checker (Horiba U-50  
multi-parameter checker). Water samples for dissolved inorganic  
nutrient concentrations (nitrate, nitrite, phosphate, and ammonia)  
were syringe-filtered (0.2 µm pore-size Acrodisc filters) into  
polypropylene centrifuge tubes, frozen in a liquid nitrogen dry  
shipper in the field, and stored at -20 ºC until analysis on a SEAL  
AA3 segmented-flow auto-analyser system using SEAL methods  
for seawater analysis. Concentrations for all nutrients were  
measured in µmol/L and converted into mg/L. For total suspended  
solid (TSS) measurements, 1 L of surface river water was  
River basin located in Johor, Peninsular Malaysia (Figure 1). The  
catchment area is around 2636 km and the mainstream length is  
around 122.7 km [20]. The tributaries of the Johor River include  
the Seluyut River, Sengi River, Redan River, Temon River, and  
Tiram River. The mean discharge rate of the Johor River is 37.5  
2
3
m /s. The annual mean rainfall intensity in this region is about  
2
360 mm, with mean temperature is around 27 °C.  
2
.2 Sampling Collection and Analysis  
As mentioned earlier, 11 water sampling stations were  
selected along the Johor River (Figure 1). 6 out of 11 sampling  
stations were at the mainstream of the Johor River and the other  
9
62  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
collected from each station and filtered through a pre-weighed 25-  
mm diameter Whatman GF/F filter and stored at -20 ºC until sent  
to the laboratory. Samples were dried for 24 h at 75 ºC and re-  
weighed on a Mettler-Toledo microbalance, and were expressed  
in mg/L. A total of 11 surface water samples were collected and  
preserved from the sampling stations to measure and analyse the  
heavy metals concentration. The water samples were digested by  
following the standard methods APHA 3030K Microwave-  
Assisted Digested and were analysed by ICP-MS following the  
standard methods of APHA 3120B. Nine most-commonly  
reported heavy metal elements, namely iron (Fe), copper (Cu),  
arsenic (As), manganese (Mn), silver (Ag), zinc (Zn), nickel (Ni),  
lead (Pb), and chromium (Cr) were selected, analysed, and  
presented in this paper (Wuana & Okieimen, 2011).  
Correlation coefficient (r) is a statistical analysis of the  
interdependence of two or more random variables [14]. The  
correlation coefficients for all the water parameters were  
calculated to determine the relationship between the  
physiochemical water quality parameter and heavy metals  
concentrations.  
3
30.0  
0.5  
30  
2
2
1
1
5
0
5
0
5
0
2
2
2
28.0  
27.5  
9.5  
9.0  
8.5  
2
7.0  
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9  
Sampling station  
S S  
10 11  
S 1S 2 S 3S 4S 5S 6 S 7S 8S 9 S  
S
Sampling station  
10 11  
(
a)  
(b)  
TSS  
NWQSM  
7
7
7
7
6
6
.6  
.4  
.2  
.0  
.8  
.6  
6
0
0
5
40  
30  
20  
10  
0
6.4  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
10 11  
1
0 11  
Sampling station  
Sampling station  
(d)  
(c)  
Nitrite  
5
4
.0  
.0  
1.40  
Ammonia  
NWQSM  
3
Results and Discussion  
The results of the physicochemical parameter of water  
1
1
0
.20  
.00  
.80  
NWQSM  
samples were presented in Figure 2. The physicochemical water  
parameters considered in this study included temperature, salinity,  
pH, TSS, phosphate, nitrite, nitrate, and ammonia concentration.  
Figure 2 (a) shows the temperature of the river water samples. The  
temperature range of the water samples was between 28.3 to 30.2  
3.0  
2.0  
0.60  
0.40  
0.20  
1
0
.0  
.0  
0
.00  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S