Journal of Environmental Treatment Techniques  
2020, Volume 7, Issue 3, Pages: 843-852  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Dataset on the Assessments the Rate of Changing  
of Dissolved Oxygen and Temperature of Surface  
Water, Case Study: California, USA  
1
*2  
1
Esmaiel Salami , Marjan Salari , Solmaz Nikbakht Sheibani , Maryam  
3
4
HosseiniKheirabad and Ehsan Teymouri  
1
Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran  
2
Department of Civil and Environmental Engineering, Sirjan University of Technology, Kerman, Iran  
3
Department of Civil Engineering, Payame noor University, Shiraz, Iran  
4
MSc, Graguated student, Department of Civil Engineering, Semnan University, Semnan, Iran  
Received: 30/09/2019  
Accepted: 31/01/2020  
Published: 20/08/2020  
Abstract  
Temperature affects aquatic organisms in many ways. Body temperature most aquatic organisms are the same as the  
surrounding water and fluctuate. Most aquatic organisms are limited to living in a temperature range, and when they are very low  
or high, they die. Temperature affects metabolism, reproduction and emergence. Temperature also affects the amount of  
photosynthesis of aquatic plants, the base of the aquatic food web. Pollutants can be toxic at higher temperatures. Most aquatic  
organisms need oxygen to survive. Oxygen is not part of the molecule of water, it is oxygen gas. Oxygen enters the water through  
the rain. Turbulence and wind through photosynthesis of aquatic plants. The body absorbs oxygen through structures such as  
cartilage or skin. Water-soluble ecosystems are stable drives. In the present study, temperature changes trending and dissolved  
oxygen concentration have been investigated. After that, the speed of temperature changes in degree and dissolved oxygen  
concentration in mg/L were calculated in each year. To achieve these terms, as can be seen in equation 1, the average of temperature  
and dissolved oxygen in one year compared with the same items in other years. An 11-year period of time (2007-2017) was  
considered. The result showed that the average value of DO changing rate in the area of study is equal to -0.138 mg/L. y and for T  
the average rate of change is equal to +0.02 ºC/y.  
Keywords: Ecosystem, Dissolved oxygen, Temperature, Surface water, Photosynthesis  
Introduction1  
photosynthesis which any alter in the balance of these  
1
parameters will affect the mean dissolved oxygen [3]. The  
increasing the surface heating leads to lessen dissolve  
oxygen into surface water and decline the reaching oxygen  
to the deep waters in deep oceans [4, 5 and 6].  
Over the last decades, the trend of earth warming has  
been increased dramatically which has undesirable effects on  
different aspects of both human life and other living species  
in the world. One of the most significant factors that can be  
a threat by this issue is disturbing the mean dissolved oxygen  
concentration at a location in which a total of three-fourths  
of the earth’s oxygen supply is produced by phytoplankton  
in the oceans, and also the temperature impacts might appear  
as well. There would be not sufficient oxygen in the water  
on provided that water gets too warm [1], and the transport  
of dissolved oxygen from the surface ocean into the interior  
is a critical process sustaining aerobic life in the mesopelagic  
ecosystem [2].  
Kaushal et al. (2010), observed the historical records for  
2
0 of the 40 streams and rivers analyzed throughout US and  
reported that important effects such as eutrophication,  
ecosystem process, contaminant toxicity, and loss of aquatic  
biodiversity, could have been presented as long as stream  
temperature continue to increase at current rate (0.077°C per  
a year) [7].  
Catherine et al. (2015), performed a study around the  
globe that about lake summer surface water temperature rose  
rapidly (global mean=0.34°C decade-1) between 1985 and  
According to a report by Wyrthi (1962), Three major  
processes have governed the oxygen in the world’s oceans:  
atmospheric exchange, ocean circulation and balance of  
2
009. Results showed that surface water warming dependent  
on combinations of climate and local characteristics, rather  
than just lake location. The most rapidly warming lakes are  
Corresponding author: Marjan Salari, Department of Civil and Environmental Engineering, Sirjan University of Technology,  
Kerman, Iran, E-mails: salari.marjan@gmail.com.  
8
43  
Journal of Environmental Treatment Techniques  
2020, Volume 7, Issue 3, Pages: 843-852  
widely geographically distributed, and their warming is  
associated with interactions among different climates factors  
from seasonally ice-covered to ice-free lakes [8]. A Recent  
study by Jordan et al. (2018) perform a response in riverine  
communities to climate variables, and the results  
demonstrated that the composition of functional feeding  
groups is affected by changing climate conditions, which  
case functional change at the ecosystem level [9]. Bogard et  
al. (2008), investigated the spatial and temporal variability  
of dissolved oxygen in the southern California Current  
°퐶  
1
°퐶  
(  
) =  
× ꢒ ∆푇,, ( )  
푦ꢇꢈꢉ  
ꢊ3ꢋ  
푦ꢇꢈꢉ  
ꢑꢑ  
푖,푗  
푚ꢀ  
푚ꢀ  
푦ꢇꢈꢉ  
1
푦ꢇꢈꢉ  
퐷푂 ꢓ  
ꢕ =  
× ꢒ ∆퐷푂 ꢓ  
ꢊ4ꢋ  
ꢊꢑꢋ  
11  
°퐶  
푇 (  
푦ꢇꢈꢉ  
1
°퐶  
)
푦ꢇꢈꢉ  
) =  
× ꢒ ∆푇 (  
11  
System in a 22-year (1984-2006), and a large dissolved  
휇푚표푙  
oxygen up to 2.1 . were observed [10].  
Also,  
where Δ푇,,, Δ퐷푂,, are the rate of temperature and DO  
changes (respectively) in station number “s” in year “j”  
towards year “i". for each station number of 55 values  
existed for Δ푠,푗, and 55 values for Δ푠,푗, these values are  
shown in Table 4 and 5.  
significantly oxygen decline over a 50-year (1960-71 and  
998-2011) from Newport hydrographic line off central  
1
Oregon, one of the few locations in the northeast Pacific, was  
reported by Pierce et al. (2012) and suggested that subarctic  
influence along  26.6 [11]. Grantham et al. (2004), found  
that in 2002, cross-self transects revealed the development  
of the abnormally strong flow of subarctic water into the  
California Current system [12].  
3 Result and discussion  
In the present study, temperature changes trending and  
dissolved oxygen concentration have been investigated.  
After that, the speed of temperature changes in degree and  
dissolved oxygen concentration in mg/L were calculated in  
each year. To achieve these terms, as can be seen in equation  
1, the average of temperature and dissolved oxygen in one  
year compared with the same items in other years. An 11-  
year period of time (2007-2017) was considered.  
Consequently, the number of differences between year i and  
j are equal to:  
Meinvielle and Johnson (2013), investigated decreasing  
dissolved oxygen concentration, increasing warmth and  
salinity, and decreasing potential vorticity, using historical  
data from the World Ocean Database from 1950 to 2012 in  
the California Current System [13]. Kwon et al. (2016),  
studied central mode waters in the North Pacific, defined as  
neutral densities of 25.6-26.6, and suggest that the area  
through which the oxygen-rich mixed layer is detrained into  
the thermocline varies on a decade basis, with a connection  
to the Pacific Decadal Oscillation (PDO) [2]. Ren et al.  
(
2016), presented the hydrographic cruise observation of  
declining dissolved oxygen collected along CalCOFI line  
6.7 off of Monterey Bay, in the central California Current  
11  
2
11!  
(
) =  
= ꢑꢑ  
ꢊ6ꢋ  
2! × 9!  
6
region. Results reported a significant decline in dissolved  
oxygen occurring in the northern, central, and southern  
California Current region, and between 1998 and 2013,  
Therefore, in both cases, the temperature’s speed ꢊ  
,  
ꢆ푒푎푟  
ꢗꢘ  
and the speed of Dissolved oxygen concentration ꢊ  
, are  
ꢆ푒푎푟  
ꢁꢂꢃꢄ  
°
dissolved oxygen decreased at the mean rate of 1.92  
which means a 40% drop from initial concentration [14].  
ꢅ푔.ꢆ푒푎푟  
increasing by the rate of ꢊ  
. Advantages of this method,  
ꢆ푒푎푟  
which is using for the first time to calculating the mentioned  
parameters, is the temperature and dissolved oxygen of the  
whole period is comparing with all previous years not only  
with the year before, and consequences would be expressed  
on average. With regard to the average temperature in all  
stations (17.4°C) and table 3, there is a 0.2 mg/L difference  
between DO at 17.4 and 18 degrees. It takes 30 years to  
temperature from 17.4 to 18 provided that the increasing rate  
of temperature continues as the same range is now (0.02  
degree per year). Also, dissolved oxygen should decrease  
0.12 mg/L, but the results are shown that DO decreases  
speed is 0.138 mg/L per a year which means over the next  
30 years the lessen dissolved oxygen is going to be 4 mg/L  
or so that is 30 times lower than what is expected due to the  
temperature rising. Hence, in addition to increasing  
temperature on a yearly basis, the rivers in this area of the  
America is getting polluted to BOD and COD. The increase  
in the sum of BOD and COD is indicating in equation 7 to  
2
Data  
This study investigated the changes in DO level and T  
value. Data obtained from 10 different water quality  
monitoring stations (Table 1) in California, USA. These data  
consist of 4018 sets of data that belong to 11 years: 1/1/2007  
to 31/12/2017 (for each station) that include the daily mean  
values of DO concentration (mg/L) and T (ºC). for each  
station some of the data missed (around 3% of DO data and  
2
% of T data, see Table 1) these data reproduced by  
placement them with an average of existed data that day but  
in other years. After reproducing the missing data annual  
average of data calculated for each year and each station, and  
rate of DO and T change calculated by the following  
procedure (equation 1 to 5):  
°
푠,푗ꢊ°퐶ꢋ − 푇푠,푖ꢊ°퐶ꢋ  
ꢌ − ꢍ  
푠,푗,푖 (  
) =  
, 2007 ≤ ꢍ, ꢌ ≤ 2017, ꢌ > ꢍ  
ꢊ1ꢋ  
푦ꢇꢈꢉ  
1
3 ꢍ푛 30 푦ꢇꢈꢉꢚ.  
ꢎꢏ  
ꢎꢏ  
퐷푂 (  
) = × ∑, ∆퐷푂,,푖  
(2)  
ꢆ푒푎푟  
55  
ꢆ푒푎푟  
8
44  
Journal of Environmental Treatment Techniques  
2020, Volume 7, Issue 3, Pages: 843-852  
Table 1: Stations profile and number of missing data  
Station  
S1  
Code  
Address  
Latitude  
Longitude  
-121.457  
-121.544  
-121.331  
-121.467  
-121.383  
-121.488  
-121.386  
-121.45  
Elv  
0
NMDO  
31  
NMT  
27  
B9537800  
B9536500  
B9540000  
B9550600  
B9553100  
B9550000  
B9554100  
B9530000  
B9529500  
B9532500  
Old River at Tracy Wildlife Association  
Old River Barrier near DMC (Below) - WQ  
Old River @ Head - WQ  
37.80283  
37.81097  
37.80759  
37.88142  
37.87618  
37.89077  
37.83394  
37.82011  
37.82012  
37.81472  
S2  
0
64  
56  
S3  
0
253  
150  
96  
235  
93  
S4  
Middle River near Tracy Blvd Bridge  
Middle River near Howard Road Bridge  
Middle River at Union Point - WQ  
6
S5  
0
52  
S6  
0
57  
29  
S7  
Middle River @ Undine Road - WQ  
Grant Line Canal at Tracy Blvd Bridge - WQ  
Grant Line Canal near Clifton Court Forebay - WQ  
Doughty Cut above Grant Line Canal - WQ  
0
114  
107  
60  
61  
S8  
0
84  
S9  
-121.545  
-121.425  
-21  
0
25  
S10  
344  
259  
Table 2: Annual average DO (mg/L) values of stations  
S1  
9.39  
9.66  
9.66  
8.63  
9.06  
8.13  
6.87  
7.38  
7.29  
7.87  
8.53  
S2  
8.81  
8.37  
8.23  
7.72  
8.45  
7.46  
7.90  
7.90  
8.09  
8.35  
8.52  
S3  
11.34  
11.33  
10.62  
9.90  
S4  
9.58  
9.11  
9.19  
8.41  
7.80  
7.63  
7.89  
7.46  
7.95  
8.08  
7.90  
S5  
9.24  
8.20  
8.56  
7.95  
9.28  
6.81  
6.37  
4.86  
5.00  
4.96  
8.83  
S6  
9.33  
9.01  
9.01  
8.56  
8.56  
8.60  
8.87  
8.25  
8.52  
8.49  
8.52  
S7  
10.26  
10.34  
9.90  
9.55  
9.39  
9.88  
8.88  
8.69  
8.60  
9.11  
9.08  
S8  
S9  
S10  
2
2
2
2
2
2
2
2
2
2
2
007  
9.28  
9.03  
9.37  
8.97  
9.46  
8.49  
7.76  
7.96  
8.02  
8.13  
9.16  
8.72  
8.65  
8.75  
8.06  
9.05  
8.09  
8.54  
8.12  
8.25  
8.65  
9.12  
9.82  
9.70  
9.29  
9.19  
9.50  
9.44  
8.04  
7.72  
7.38  
7.42  
8.74  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
9.74  
10.50  
8.93  
9.01  
9.11  
9.41  
9.40  
Table 3: Annual average T (ºC) values of stations.  
1
2
2
2
2
2
2
2
2
2
2
2
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
17.61  
17.70  
17.65  
17.39  
15.38  
17.85  
17.26  
18.57  
18.00  
18.49  
16.37  
17.15  
17.15  
17.10  
17.09  
15.88  
17.31  
17.06  
18.61  
18.33  
18.00  
16.89  
17.67  
17.67  
17.64  
16.96  
15.02  
17.61  
17.57  
18.90  
18.68  
18.41  
15.52  
17.36  
17.25  
17.32  
17.27  
16.34  
17.42  
17.18  
18.55  
18.22  
18.12  
17.13  
17.65  
17.44  
17.49  
17.42  
15.30  
17.58  
17.09  
18.30  
17.73  
18.02  
16.28  
17.36  
17.32  
17.38  
17.20  
16.56  
17.55  
17.35  
18.66  
18.49  
18.23  
17.37  
17.36  
17.40  
17.43  
17.10  
14.99  
17.50  
17.50  
18.62  
18.23  
18.40  
15.68  
17.53  
17.24  
17.56  
17.14  
15.12  
17.74  
17.55  
18.88  
18.48  
18.41  
15.80  
17.46  
17.38  
17.33  
17.08  
15.42  
17.68  
17.30  
18.69  
18.41  
18.21  
16.03  
17.60  
17.34  
17.22  
16.83  
15.14  
17.75  
17.51  
18.85  
18.59  
18.49  
15.93  
8
45  
Journal of Environmental Treatment Techniques  
2020, Volume 7, Issue 3, Pages: 843-852  
Table 4: Values of Δ퐷푂,,, the horisental year number are “i" values and the vertical year lable in the first column (on the left  
side of table) are “j” values, the value of ∆퐷푂 come in table, too.  
S1  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
-0.19  
2015  
2016  
2
2
2
2
2
2
2
2
2
2
008  
0.2643  
0.1336  
-0.254  
-0.083  
-0.253  
-0.421  
-0.288  
-0.264  
-0.169  
-0.086  
2007  
009  
010  
011  
012  
013  
014  
015  
016  
017  
0.0029  
-0.513  
-0.198  
-0.382  
-0.558  
-0.379  
-0.339  
-0.223  
-0.125  
2008  
DO  
1
=
(mg/L.y)  
-1.028  
-0.299  
-0.511  
-0.698  
-0.456  
-0.396  
-0.256  
-0.141  
2009  
0.4307  
-0.252  
-0.587  
-0.313  
-0.269  
-0.127  
-0.014  
2010  
-0.934  
-1.096  
-0.561  
-0.445  
-0.238  
-0.088  
2011  
-1.259  
-0.374  
-0.281  
-0.064  
0.0808  
2012  
0.5108  
0.2074  
0.334  
-0.096  
0.2455  
0.384  
2014  
0.587  
0.6239  
2015  
0.4157  
2013  
0.6608  
2016  
S2  
2
2
2
2
2
2
2
2
2
2
008  
-0.44  
009  
010  
011  
012  
013  
014  
015  
016  
017  
-0.291  
-0.363