Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 915-924  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link:  
Microbial Fuel Cell: An Emerging Technology for  
Wastewater Treatment and Energy Generation  
Karan Singh and Dharmendra  
Department of Civil Engineering, National Institute of Technology, Hamirpur, (H.P.), India - 177005  
Received: 13/02/2020 Accepted: 07/04/2020 Published: 20/05/2020  
Microbial fuel cells (MFCs) are enticing surprising attention due to their dual functions of energy generation and waste removal  
from wastewaters. Microbial fuel cells use microbial metabolism to convert biochemical metabolic energy into electrical current by  
using different substrates. Microbes are fed in the anode with the substrate (e.g., domestic, industrial, leachates, etc.) to enhance the  
performance of microbial fuel cells. It provides an opportunity for the feasible production of energy from bio-degradable organic matters  
while treating wastewater. In recent years, despite the extensive efforts to improve the efficiency of the cell, energy production is still  
low, especially in scaled-up systems. However, the construction cost of microbial fuel cells is relatively higher than fossil fuel prices, so  
it makes doubtful that power generation can ever be competitive with existent energy generation approaches but improvements in power  
densities, reductions in materials costs may make microbial fuel cells real-world for electricity generation. In-depth review of literature,  
the study summarizes the role of microorganisms and substrate in the anode chamber. It includes types, components, mechanism and  
operation of microbial fuel cells. This review highlights various parameters affecting microbial fuel cells, current challenges and  
applications in the production of electrical energy in a sustainable way.  
Keywords: Biodegradable; Metabolic energy; Microbial fuel cell; Nutrient removal; Wastewater treatment  
architectures for maximizing the columbic efficiency and  
power generation is the main challenge for an MFC. Further  
challenges coming in the way are to reduce the cost and make  
architecture for MFC that are intrinsically scalable (25-28).  
This study highlights different factors affecting the  
performance of MFC, its benefits, limitations, and role of  
substrates and microorganisms.  
The demand for renewable energy will possibly comprise a  
huge portion of global energy production and their usage in the  
future (1-2). Present prospects for global energy have been  
direct us to move towards non-renewable energy (3-4). Now a  
day; non-renewable resources of energy are exhausting at a  
much faster rate which suggests the development of different  
cost-effective renewable energy technologies. India has  
abundant sources of renewable energy, biomass (organic  
matters) is one of them (5). The total available volume for  
electricity generation in India was about 2670 GW till 2013 in  
which the contribution of renewable energy was 10.5%.  
Biomass contributes 12.83% of total renewable energy  
generation (6). Hence, a lot of biomass (substrate) is available,  
which has a high potential to generate energy with the help of  
microbial fuel cell (MFC). The MFC is one of the technologies  
with the potential for promoting self-sustainability and  
resource efficiency in the treatment of wastewater (7-12). MFC  
comprises anode and cathode compartment. The  
proton/cation/anion membrane or salt bridge divides the anodic  
and cathodic compartments. Anode creates biofilm at its  
surface which acts as a catalyzer to transform biochemical  
energy into electrons, while the oxygen acts as an electron  
acceptor to form water at the cathode (13-15). MFC has the  
capability to transform biochemical energy which is present in  
waste biological matter into electrical energy with bacterial  
2 Classification of microbial fuel cells (MFC)  
The classification of MFC is essential because it states  
about the efficiency of MFC, i.e. coulombic efficiency,  
permanency, robustness, and power output. The design which  
produces high power and coulombic efficiency based on cost-  
effective materials are required for practical applications,  
which can be implemented on a large scale (25). There are a