2020, Volume 8, Issue 3, Pages: 988-998  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Mitigation of Environmental Degradation in  
Merapi Volcano Disaster-Prone Area: A Case  
Study of Klaten District  
3
1
2
3
3
Widodo Brontowiyono* , Lupiyanto R. , J. Hamidin , Julianto E. A , Widyastuti A ,  
3
4
Harmawan F. and Supriyo  
1
Department of Environmental Engineering, Universitas Islam Indonesia (UII), Yogyakarta, Indonesia  
2
Center for Environmental Study, Universitas Islam Indonesia, Yogyakarta  
3
Karunia Sejahtera, Yogyakarta, INDONESIA  
4
Dept. of Agrotechnology, University of Pembangunan Nasional “Veteran” Yogyakarta Doctor Candidate, Faculty of Economy, UII  
Received: 06/01/2020 Accepted: 13/04/2020 Published: 20/09/2020  
Abstract  
Eruptions of Mount Merapi have provided economic benefits, including increased soil fertility and abundant sand and stone. As time  
goes by, mining has been spreading to yards, getting uncontrolled and disregarding rules as well as good management. As a result,  
environmental degradation, particularly land criticality, is highly likely to occur. This study was conducted to identify the levels of land  
criticality in the slope of Merapi. The output was recommendations for land rehabilitation to achieve sustainable development. The  
results showed that the study area with highly critical land reached an extent of 696.43 Ha or 4.48%. Critical, medium, and potentially  
critical lands covered an area of 133.02 Ha or 0.85%, 80.35 Ha or 0.52 %, and 527.17 Ha, respectively. Meanwhile, uncritical land had  
the largest extent, reaching 14.123 Ha. Recommendations for critical lands include vegetation and civil engineering methods.  
Keywords: Mitigation, Environmental degradation, Critical land, Merapi Volcano  
Introduction1  
distribution and extent of critical lands and to provide mitigation  
and recommendation for land rehabilitation in the scope of  
regional development according to the criticality map  
1
Indonesia is an archipelago with 129 active volcanoes and  
approximately 500 non-active volcanoes [1]. One of the most  
active volcanoes in Indonesia is Merapi Volcano. Its latest  
eruption in 2010 released around 100 million cubic meters of  
volcanic materials [2]. Eruptions of Merapi pose disaster risks and  
impacts while at the same time providing considerable economic  
benefits. The positive impacts of Merapi post-eruption include  
increasing soil fertility and an abundance of sand and stone  
materials. The area around Merapi Volcano is a fertile region for  
agriculture. A study by [3] showed that the carrying capacity of  
agricultural land in disaster-prone area III of Merapi Volcano is  
extremely high. Another business activity developing in the  
region is sand and stone mining.  
2 Material and methods  
2.1 Data collection methods  
Data was gathered using two methods, including: (1)  
Secondary Data Collection: Secondary data was obtained from a  
range of previous research, studies, and reports as well as from  
the reports of related agencies and existing regional regulations.  
Such method involved a literature study and institutional research;  
(2) Primary Data Collection: Primary data was collected through  
field observation and interview. The results consisted of  
documents, interview transcripts, and location plotting from GPS.  
With the course of time, sand and stone in the river become  
less available, making miners expand their activity to house yards.  
Mining activities become uncontrollable without regulations or  
good management. Consequently, the area is prone to  
environmental degradation in the form of critical land that makes  
a negative impact on fertile agricultural land.  
Based on the abovementioned empirical conditions, this study  
is relevant to identify the criticality levels of Merapi slope regions.  
As the research output, land rehabilitation is recommended to  
achieve sustainable development. Identified critical level and  
rehabilitation recommendation of land used Digital Soil Mapping  
2.2 Data Analysis Methods  
The analysis methods to determine the criticality levels,  
distribution, and land area referred to the regulation from the  
Directorate General of Watershed Management and Social  
Forestry of the Ministry of Forestry No. P.4/V-SET/2013  
concerning Technical Guidelines for Preparing Critical Land  
Spatial Data. Classification of critical lands is based on the total  
score of critical land parameters shown in Table 1. The following  
criteria show criticality levels in agricultural land based on the  
research area (Table 2). Analysis of recommendations for land  
rehabilitation referred to the Government Regulation No. 76 Year  
2008 concerning Forest Reclamation and Rehabilitation as well  
as Regulation of Forestry Minister of the Republic of Indonesia  
No. P.32/MENHUT-II/2009 concerning Guidelines for Preparing  
(DSP) defined as the creation and population of spatial soil  
information systems by the use of field and laboratory  
observational methods coupled with spatial and non-spatial soil  
inference systems” [4]. This study aims to map and identify the  
Corresponding author: Widodo Brontowiyono, Department of Environmental Engineering, Universitas Islam Indonesia (UII),  
Yogyakarta, Indonesia. E-mail: widodo.bronto@uii.ac.id, lupy.algiri@gmail.com, pt.karuniakons@gmail.com.  
9
88  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Technical Plan of Land and Forest Rehabilitation in Watershed  
Area (RTk RHL-DAS).  
perspective of agriculture, critical land is associated with  
production whereas the perspective of forestry correlates critical  
land to its function as a medium for water management, forest  
production, and protection from flood and/or downstream  
sedimentation [9].  
Table 1: Classification of Critical Lands Based on the Total  
Score  
Total Score in  
Land degradation is defined as the process of temporary as  
well as permanent decrease in land productivity characterized by  
decreasing physical, chemical, and biological properties. Critical  
land is one of the forms of land degradation [10]. In general,  
critical land is among the indicators of environmental degradation  
as an impact of different types of imprudent land use [11]. The  
main characteristics of critical land include barrenness, aridity,  
rocks emanating on the ground, and areas generally located in hilly  
or steep sloping topography [12, 13]. Low productivity is  
characterized by high acidity, low nutrient content (P, K, Ca, and  
Mg), low cation exchange capacity, base saturation, and organic  
content as well as high levels of Al and Mn that can poison plants  
and are sensitive to erosion. In addition, critical land is also  
generally characterized by reed vegetation with a relatively low  
soil pH of 4.8 to 5.2 due to high intensity of soil washing and large  
quantity of rhizomes that become mechanical barriers in plant  
cultivation [14].  
According to United Nations University Institute of Advanced  
Studies [15], degradation of natural resources reduces the  
productivity. [16] emphasized the development of high yielding  
crop varieties with little attention given to the ecology on which  
the plant survival. He suggested that crop yields in Africa could be  
tripled through proper management of the soil environment. [17]  
also reported that long-term fertilization effects on crop yield and  
soil fertility changes. Studies showed that rice productivity was  
strongly influenced by soil texture, nutrient concentration and  
organic matter [18]. Paddy soils are naturally heterogeneous.  
Complex interrelationships existing between physical, chemical  
and biological soil properties have long been recognized.  
Protected  
Criticality  
Area outside Level  
Reserved  
Forest Area  
Cultivation  
Area  
the Forest  
Highly  
110-200  
1
1
2
20-180  
81-270  
71-360  
115-200  
201-275  
276-350  
critical  
201-275  
276-350  
Critical  
Rather  
Critical  
Potentially  
Critical  
3
4
61-450  
51-500  
351-425  
426-500  
351-425  
426-500  
Uncritical  
3
Literature Review  
Critical land is defined as land with changes in its use and  
ability that eventually endanger the hydrological function, hydro-  
orological function, agricultural production, settlements, socio-  
economic life, and environment [5]. Critical land is currently  
unproductive land or soil due to land use and management that  
does not consider the requirements of soil and water conservation,  
leading to damage, loss or reduced function to predetermined or  
expected limits [6].  
Critical land has to be controlled due to increasing food  
demand. According to Food and Agriculture Organization (FAO),  
the global rice requirements in 2025 will be 800 million tons (MT)  
while the present production is 600 MT and an additional 200 MT  
still needs to be produced by increasing productivity per hectare to  
meet the future requirements [7]. Suitable rice based cropping has  
to be evaluated to assess the stability in production [8].  
The definition of critical land varies between one institution  
and another due to different perspectives of each user. From the  
Table 2: Criteria of Criticality in Agricultural Land  
Criteria (%  
weight)  
No.  
Class  
Percentage/Description  
Score  
Note  
5
1
2
. Extremely High  
. High  
>80%  
Assessed based on the  
ratio to optimum  
general commodity  
production in a  
60-80%  
41-60%  
21-40%  
<20%  
Productivity *)  
4
3
2
1
5
4
3
1
3. Medium  
4
5
(30)  
. Low  
. Extremely Low  
traditional management  
1
2
. Leveled  
. Sloping  
<8%  
8-15%  
16-25%  
26-40%  
>40%  
2
Slope (20)  
3. Medium Steep  
4
5
. Steep  
. Extremely Steep  
2
1
5
4
3
2
5
1
2
3
4
. Light  
0-I  
II  
III  
IV  
. Medium  
. Intense  
. Severe  
Calculated using USLE  
formula  
3
4
Erosion (20)  
Management  
-Application of soil conservation technology  
1
. Good  
Complete and in accordance with technical guidelines  
- Incomplete or unmaintained  
2. Average  
. Poor  
(30)  
3
1
3
-
Not available  
9
89