2020, Volume 8, Issue 3, Pages: 985-987  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Quality and Environmental Conservation of  
Coastal Ecosystems in Purworejo, Indonesia  
1
*
1
2
1
2
Widodo Brontowiyono , Kasam , Lupiyanto R , Nugrahayu Q , Widyastuti A , Harmawan  
2
F
1
Department of Environmental Engineering, Universitas Islam Indonesia, Yogyakarta, INDONESIA  
2
Karunia Sejahtera, Yogyakarta, INDONESIA  
Received: 19/12/2019  
Accepted: 17/06/2020  
Published: 20/09/2020  
Abstract  
The quality of coastal ecosystems in Purworejo - Central Java tends to degrade due to pollution and environmental degradation. This  
study aims to identify indicators, including soil ecosystem, water quality, wastewater, and seawater quality. The methods include geo-  
electrical survey, field observation, and laboratory test. The results show that the area is polluted and degraded. Salinity distribution  
varies between 0.01 and 0.13 due to geological factors and seawater intrusion. Another finding shows that TSS reaches 1000-13.000  
mg/L with 162-551 mg/L BOD, 2.24-4.77 mg/L Sulfide, and 0.61-2.06 mg/L Nitrite allegedly caused by shrimp farming activities. Clean  
water sources are polluted as total coliforms reach 46x103 195x103 MPN/100 ml. Seawater quality is also degraded with 8.96 pH. Pb,  
Cd, Cr, and Hg exceed the standard. This study recommends that, for a sustainable coastal area, shrimp farming should apply the best  
practice management with a wastewater treatment plant. Such area requires sanitation facilities to minimize pollution by coliforms. Firm  
control should be performed on industrial activities that contaminate seawater with heavy metals. Clean water pumping through wells  
should not exceed 16.82 m of depth to anticipate seawater intrusion.  
Keywords: Pollution, Degradation, Conservation, Coastal area  
Introduction1  
flows further inland, which also leads to changes in the physical  
1
characteristics of land. Concentration of Nitrite in pollutants  
greatly increases when neraby farm lands who predominantly  
uses inorganic fertilizers, pesticides and insecticides (4).  
Such study is intended to make recommendations for the  
management of pollution and environmental damage in coastal  
ecosystems as part of conservation planning and environmental  
recovery.  
Marine and coastal ecosystems are continuously exposed to  
pollution caused by eutrophication, toxic substances such as  
pesticides and POPs, heavy metals, ocean acidification, and  
direct human activities (1). One of the marine and coastal  
ecosystems with decreasing quality is located in Purworejo  
Regency, Central Java, Indonesia.  
Approximately 80% marine and coastal pollution is caused  
by industrial, agricultural, and fish-farming activities as well as  
land-use activities (2). The fish farming activities contributing  
to the pollution in marine and coastal ecosystems of Purworejo  
Regency is shrimp farming. Coastal pollution can be triggered  
by pollutants along the coastline and/or indirectly through river  
flows, offshore activities, seawater intrusion into the ground,  
and others. Shrimp-farming operating activities use a very large  
amount of groundwater, leading to a significant reduce in  
groundwater quantity. In addition, untreated wastewater  
drained from shrimp ponds is immediately discharged into the  
surroundings in a vast quantity with unidentified quality,  
making the environment more burdened.  
2
Materials and methods  
The research stages consist of secondary data collection,  
survey and inventory, testing, data analysis, classification of  
status, and conclusions. Geo-electrical survey was carried out  
to identify underground damage, which includes the depth and  
quantity of groundwater and the extent of seawater intrusion  
inland. Wastewater testing was conducted on the wastewater  
from shrimp ponds and industries with three sample points. The  
parameters tested comprised TSS, turbidity, pH, BOD,  
Phosphate, Nitrite, Nitrate, Sulphates, Ammonia, and H2S.  
Clean water quality testing was performed for groundwater  
with ten sample points. The parameters tested consisted of  
colour, turbidity, pH, total hardness (CaCO3), Fluoride, (F),  
Chloride (Cl), Manganese (Mn), Iron (Fe), Nitrite, Nitrate,  
According to (3), on a global scale, irrigation contributes  
the largest volume of wastewater and the livestock sector  
produces more animal waste than human. Such activities  
deteriorate groundwater condition, and seawater intrusion  
Corresponding author: Widodo Brontowiyono, Department of Environmental Engineering, Universitas Islam Indonesia, Yogyakarta,  
9
85  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 985-987  
Sulphates, KMnO4, dissolved solids (TDS), Cyanide (CN),  
coliform MPN, and salinity. Seawater quality testing was  
carried out on the seawater along the coastal ecosystems in  
Purworejo Regency with five sample points. The parameters  
tested included total coliform, Zn, Pb, Cu, Cd, Cr, Hg, and pH.  
Geological analysis was conducted on the results of geo-  
electrical survey. Identification analysis of underground  
degradation correlates with the extent of seawater intrusion  
inland. Analysis of wastewater and clean water pollution was  
done to the results of wastewater-quality laboratory test, and  
comparison was made with the environmental quality  
standards. The quality standards for the analysis of clean water  
pollution referred to the Regulation of the Minister of Health  
Number 32 of 2017 concerning the Quality Standards of Clean  
Water and Drinking Water, and for that of wastewater  
pollution, the Regional Regulation of Central Java Province  
Number 5 of 2012 concerning Wastewater Quality Standards  
for Other Industrial Activities was utilized. Meanwhile, the  
results of seawater-quality laboratory test was analyzed for  
seawater pollution and compared with the quality standards  
from the Decree of the Minister of Environment Number 51 of  
MPN/100 ml (threshold = 50 MPN/100 ml).  
Meanwhile, the results of river water testing show that the  
key parameters exceeding the environmental quality standard  
for clean water include the hardness and total coliform,  
3
reaching 506 mg/L (500 mg/L EQS) and 105 x 10 MPN/100  
ml (50 MPN/100 ml EQS), respectively. Hard water is caused  
2
+
2+  
by Ca and Mg ions or by such other elements as Al, Fe, Mn,  
and Zn (7). The level of water hardness is also influenced by  
land topography in which lands with flat topography tend to  
have a high level of hardness because the movement of  
minerals in water becomes slower and they settle at certain  
points. In addition to hardness, the river water has been polluted  
by total coliform. Such pollutant overload can indicate the  
existence of pollutant sources intruding clean water resources.  
According to (8), when total coliform bacteria are located, it is  
highly likely that there has been pollution due to human organic  
waste or animal waste. Such pollution comes from poor  
sanitation practices, such as the high percentage of people  
practicing open defecation reaching 22.7% in 2015 (9), poor  
sanitation facilities such as open unsecured latrines, and the  
sewer system that is mixed with the system for rainwater and  
domestic waste among the community in the study area.  
2
004 concerning Seawater Quality Standards.  
3
.3 Seawater Pollution  
Test sampling is conducted at 5 points spreading from the  
3
Results and discussion  
3
.1 Wastewater Pollution  
east to the west. The test results in key parameters that indicate  
seawater pollution in the coastal ecosystem. These parameters  
include pH and heavy metals (Pb, Cd, Cr, Hg) as well as the  
biological parameter of total coliform. The pH level exceeds  
the quality standard at sample point 4 with 8.96 (7 8.5 EQS).  
The levels of Pb at 5 sample points are all above the threshold  
of environmental quality standard with 0.27 mg/L at point 1,  
Shrimp-farming activities around a marine and coastal  
ecosystem lead to declining environmental quality. Wastewater  
sampling is done at three points of shrimp-pond outlet followed  
by a laboratory-scale analysis. The results indicate a number of  
pollutant parameters with excessive values. These parameters  
include TSS of 1470, 13430, and 1047.5 mg/L (100 mg/L EQS)  
in samples 1, 2, and 3 respectively, with BOD values of 440,  
51, and 162 mg/L (EQS = 50), and sulphide parameters of  
.77, 3.74, and 1.24 mg/L (1 mg/L EQS). In addition, the  
parameter of Nitrite as N at the wastewater sample points 1 and  
is 2.05 and 2.06 mg/L (1 mg/L EQS), while that of sample 3  
0
4
.16 mg/L at point 2, 0.19 mg/L at point 3, 0.25 mg/L at point  
, and 0.25 mg/L at point 5 while the EQS is 0.005 mg/L. This  
5
4
is similar to the parameters of Cd, Cr and Hg in which all points  
have greater levels than 0.002 mg/L EQS threshold.  
2
The levels of heavy metal content that exceed the quality  
standard are caused by various activities, including waste from  
industries, mining, agriculture, and domestic activities that  
contain heavy metals (10). In the industrial sector (11), it  
records the existence of small-scale to large-scale industries in  
Purworejo Regency as a form of support for the local economy,  
such as the textile industry in Banyuurip, wood processing in  
Bayan, and widespread food industries as well as other small-  
scale and medium-scale industries. Such activities as wood  
processing, agriculture, and tourism have significantly affected  
the hydrological aspect of the environment with lowered water  
productivity and disrupted water quality.  
is 0.65 mg/L indicating that it remains below the environmental  
quality standards. The high values of physical, chemical, and  
organic chemical parameters result from the fact that shrimp  
farming uses a number of chemicals in the feed, antibiotics, or  
drugs that protect shrimp from disease, allowing optimum  
shrimp growth and larger yields (5). Furthermore, in the  
absence of Wastewater Treatment Plant, shrimp-farming waste  
will pollute water bodies. According to (6), if the best practice  
management of shrimp farming is not implemented, the effect  
appears as pollution from leftover feed and other solutes in the  
wastewater.  
3
.2 Clean Water Pollution  
The test results indicate several parameters that exceed the  
3.4 Geo-electrical Analysis  
environmental quality standards for clean water set in the  
Regulation of the Minister of Health No. 32 of 2017.  
Parameters above the threshold can indicate groundwater  
pollution in the study area. These parameters include water  
turbidity of 26.7 NTU (EQS = 25 NTU) at sample point 10,  
manganese (Mn) of 1.49 mg/L (0.5 mg/L EQS) at point 10,  
water hardness of 704 mg/L at point 2, 1562 mg/L at point 7,  
From the results of geo-electrical resistivity analysis  
conducted using a computer program and correlated with the  
geological conditions, it is interpreted that there are 3 types of  
lithology based on the resistivity level of rock types, including  
the cover layer, the clay layer, and the sand layer. The depth  
and resistivity of each layer can be seen in Table 1. Table 1  
shows that there is a lithology at the observation point with the  
potential of water content in the form of sand layer at a depth  
of 13.97  16.82 meters. However, since the layer thickness is  
less than 3 meters, it is estimated that the potential of water  
discharge is relatively small.  
2
068 mg/L at point 8, 904 mg/L at point 9, and 1672 mg/L at  
point 10 with 500 mg/L EQS. Another key parameter exceeding  
the environmental quality standard is the total coliform in all  
3
3
well points that reaches a range of 46 x 10  116 x 10  
9
86  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 985-987  
Table 1: Depth, Resistivity and interpretation of rock unit in  
the geo-electrical analysis  
Acknowledgment  
The authors would like to thank the regional government of  
Purworejo Regency for supporting this study.  
Depth  
Meter)  
0 1.03  
1.03 4.52  
4.52 13.97  
13.97  16.82 27.16  
16.82  48.69 3.87  
>48.69  
Resistivity  
(Ohm-m)  
5.96 71.04  
5.66  
Interpretation  
of Rock Unit  
Cover layer  
Clay  
Cl ay  
Sand  
Layer  
(
1
2
3
4
5
6
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
8.17  
(avoidance of guest authorship), dual submission, manipulation  
Clay/Sand  
Clay/Sand  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
4.05  
Source: Results of Geo-electrical Analysis  
Meanwhile, in the lower layer deeper than 16.82 meters, the  
resistivity value shows a lithology in the form of clay without  
the potential to become an aquifer. Because the assessment site  
is located in the coastal ecosystem, the small resistivity value  
leads to another possibility of sand layer containing water with  
seawater intrusion. Therefore, if drilling is carried out to reach  
a depth of more than 16.82 meters, the possibilities are: (a) no  
layer with water resource is found, or (b) a layer containing  
water is located but with seawater intrusion.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
3
.5 Conservation of Coastal Ecosystems  
final assessment indicates whether environmental  
References  
A
1
Adams, S.M. (2005). Assessing cause and effect of multiple  
stressors on marine systems. Marine Pollution Bulletin. 51, 649-  
degradation has incurred based on water pollution and land-use  
change. From the samples studied, most of the parameters  
tested remain below the quality standard thresholds except for  
the levels of hardness and total coliform that exceed the quality  
standard. These two parameters will not have a significant  
effect on environmental degradation because such condition  
commonly occurs in a normal environment. It is hereby  
suggested that no significant environmental degradation due to  
water pollution has occurred. A number of recommendations  
are made as a step to approach a sustainable conservation  
program for the coastal ecosystems. Shrimp farming should  
implement the best practice management of environmentally  
friendly shrimp farming by constructing wastewater treatment  
plants. In addition, coastal ecosystems should be completed  
with appropriate sanitation facilities to minimize total coliform  
bacteria pollution in water resources. Industrial activities that  
pollute seawater with heavy metals (Pb, Cu, Cr, and Hg) should  
also be kept under firm control. Clean water collection through  
wells should not exceed a depth of 16.82 meters to anticipate  
seawater intrusion into fresh water resources. In addition,  
coastal ecosystems should provide greenbelts as a windbreak,  
such as with Australian pine trees or other plants alike. There  
are six main socio-economic categories for ensuring the  
sustainable development of economic, industrial, cultural,  
recreational and, consequently, ecological sphere of city’s life  
6
57.  
2
Hildering, A., Keesen, A.M., van Rijswick, H.F.M.W. (2009).  
Tackling pollution of the Mediterranean Sea from land-based  
sources by an integrated ecosystem approach and the use of the  
combined international and European legal regimes. Ultrecht Law  
Rev. 5, 80-100.  
USEPA. (2013). Literature review of contaminants in livestock  
and poultry manure and implications for water quality. USEPA  
Tijjani, G., Kabiru, GI., Mukatari, AK., Lukman, SS., Mohammed,  
JS., Olanrewaju, L., Zulkarnain. (2016). Assessment of Open Well  
Water Contamination in High Densiry Residential Area. Journal of  
Environmental Treatment Techniques, 4(2): 37-40.  
Nyanti, L., Berundang, G., & Ling, T. (2011). Shrimp Pond  
Effluent Quality during Harvesting and Pollutant Loading  
Estimation using Simpsons Rule. International Journal of Applied  
Science and Technology, 1(5), 208213.  
Widodo B., Erwin, Adam. (2015). Manajemen Kontrol Kualitas  
Air Tinkatkan Produktifitas Tambak Udang Vannemei (Water  
Quality Control Improving Vannemei Shrimp Pond Productivity),  
DPPM, UII.  
Setyaningsih N. (2014). Analisis Kesadahan Air Tanah  
Kecamatan Toroh Grobogan Jawa Tengah (Analysis Of  
Groundwater Hardness In Toroh Grobogan Central Java Province).  
UMS.  
Sembel. (2001). Toksikologi Lingkungan Dampak Pencemaran  
dari Berbagai Bahan Kimia dalam Kehidupan Sehari-hari.  
(Environmental Toxicology. Daily Effects of Pollution from  
Chemicals). Andi.  
3
4
5
6
7
8
(12): (a) territory management or administrative apparatus; (b)  
9
1
Anonymous. (2015). Buku Profil Sanitasi Kabupaten Purworejo.  
economic state of the territory; (c) state of the cultural sphere;  
(Sanitation Profile of Purworejo Regency).  
(
(
d) pace of economic development; (d) production sector; and  
e) state of the social sphere.  
0
1
Nugraha, W.A (2009). Kandungan logam berat pada air dan  
sedimen di perairan Socah dan Kwanyar Kabupaten Bangkalan  
(Heavy metal content in water and sediment of Socah and Kwanyar  
in Bangkalan Regency). Jurnal Kelautan, 2 (2).  
4
Conclusion  
1
1
Badan Pusat Statistik Kabupaten Purworejo (Central Statistics  
Agency of Purworejo Regency). (2017). Kabupaten Purworejo  
Dalam Angka Tahun 2017 (Purworejo Regency in Figures 2017).  
Identification of pollution and degradation to the coastal  
ecosystems in Purworejo Regency indicates that some areas are  
polluted, however, in general the study area is an insignificant  
environmental damage. This conclusion is supported by the fact  
that the water pollution factors remain under normal conditions.  
2 Tatyana, V., Rada, D., Elena, K., Nadezhda S. (2019). Sustainable  
Development Management of an Urban Municipality. Journal of  
Environmental Treatment Techniques, 7(4): 705-710.  
9
87